Superdecomposable pure injective modules over commutative Noetherian rings
نویسندگان
چکیده
We investigate width and Krull–Gabriel dimension over commutative Noetherian rings which are “tame” according to the Klingler–Levy analysis in [4], [5] and [6], in particular over Dedekind-like rings and their homomorphic images. We show that both are undefined in most cases.
منابع مشابه
NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملSome Model Theory of Modules over Bézout
We will develop the model theory of modules over commutative Bézout domains. In particular we characterize commutative Bézout domains B whose lattice of pp-formulae has no width and give some applications to the existence of superdecomposable pure injective
متن کاملRD-flatness and RD-injectivity
It is proved that every commutative ring whose RD-injective modules are Σ-RD-injective is the product of a pure semi-simple ring and a finite ring. A complete characterization of commutative rings for which each artinian (respectively simple) module is RD-injective, is given. These results can be obtained by using the properties of RD-flat modules and RD-coflat modules which are respectively th...
متن کاملCopure injective resolutions, flat resolvents and dimensions
In this paper, we show the existence of copure injective preenvelopes over noetherian rings and copure flat preenvelopes over commutative artinian rings. We use this to characterize n-Gorenstein rings. As a consequence, if the full subcategory of strongly copure injective (respectively flat) modules over a left and right noetherian ring R has cokernels (respectively kernels), then R is 2-Gorens...
متن کاملGorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کامل